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1 Introduction

Almost all macroeconomic models until the 1990s focused mainly on production in the

market and neglected production in a home. This changed with the papers by Greenwood

and Hercowitz (1991) and Greenwood et al. (1993) whose authors argue that neglecting

production in the home is a missed opportunity in then modern macroeconomic models.

A special emphasis lays on the circumstance that it’s relatively easy to include house

production in a macro-model. Furthermore, data from the 1990s underline their argument

that house production must be an essential part of an economic model.

Greenwood et al. (1993) refer to data from the Michigan Time use survey which

measured how a household allocates its time between working in the market, working at

home and leisure. Whilst a household spends 33 percent working in the market, working

at home follows with 25 percent of their remaining day time. Another economic aspect

that shows the effect of house production on the gross national product can be found in the

amount spent on business capital versus the amount spent on household capital. Where

the second exceeds the first by nearly 15 percent (Greenwood et al. 1993). Overall the

estimates for the household’s sector output of the GDP range between 20 and 50 percent,

depending on the survey.

Overall, the figures above illustrate that leaving out house production in a macroe-

conomic model seems like a missed opportunity. The model by Greenwood et al. (1993)

includes a household production function into a standard real business cycle model (RBC).

Following that households in this enriched model now face decisions on how to allocate

their time not only between market work and leisure but between market work, leisure,

and work at home. At the same time, a household must decide how to use the output of an

economy by either consuming, investing in business capital, or investing in home capital.

One example given by Greenwood and Hercowitz (1991) shows how home production may

look like. For this, they take the example of preparing a meal at home. This process

includes food produced in the market by hours spent working in the market as well as

business capital, combined with home cooking services that use capital and time at home.

A household then creates the end good: utility.

In the following sections 2-9, we derive the model by Greenwood et al. (1993) by

presenting the integral parts of the models such as agents, the law of motion of capital

and technology followed by a summary of the variables and parameters and finishing this

part with an overview of the first-order conditions. Afterwards, we show in section 10
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the deflating of the model, in section 11, we derive the deterministic steady state and in

section 12 the log-transformation. In section 13, we comment on the use of the impulse

response functions generated by Dynare. Section 14 provides an overview of the relevant

equations of the model. Finally, in section 15, we add two extensions in form of minimal

home production and a more general home production function.

2 Representative Household

In this model, there are three key agents, one of them being households. Greenwood et al.

(1993) assume one representative household which maximizes its utility. The household

faces decisions about how to allocate its time as well as how to allocate the economy’s out-

put along with consumption, investment in business capital, and investment in household

capital. The household maximizes the following utility function:

U =
∞∑
t=0

βt[b log(Ct) + (1− b) log(lt)] (1)

A household gains utility from consumption (Ct) at period t as well as leisure time in said

period (lt). Where leisure time is given by the difference of all available time (equal to 1)

minus hours worked in the market, hMt, and hours worked in the home, hHt:

lt = 1− hMt − hHt (2)

A household’s consumption comes from two sources, firstly from consuming goods that are

produced in the market, cMt, and secondly from consuming goods and services produced

in a home cHt, where e measures the willingness of a household to substitute between cMt

and cHt, the larger e the greater is the willingness to substitute:

Ct = [aceMt + (1− a)ceHt]
1
e (3)

The two last constraints concern the allocation of output produced in the market and the

home production function. Equation (4) is referred to as the market budget constraint.

As the names suggest the constraint shows the decision faced by the household on how to

allocate over its uses. The after-tax income given by the right-hand side can be used for

consumption of market goods (cMt), investment in business capital (xMt) and/or invest-

ment in household capital (xHt).

cMt + xMt + xHt = wt(1− τh)hMt + rt(1− τk)kMt + δMτkkMt + Tt (4)
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Equation (5), which is the home production function, shows the constraint that a household

faces whilst being active in home production. The household production function combines

labor hours spent working at home (hHt) together with a technology variable (zHt) and

household capital (kHt) to produce household output cHt.

cHt = g(hHt, kHt, zHt) = kηHt(zHthHt)
1−η (5)

Bear in mind that the output of house production can only be consumed in a household

and not be invested in any kind of capital, referring back to the case of preparing a meal

at home shows for example that a meal could not be invested back, neither in business

capital nor in household capital.

3 Representative Firm

There is one representative firm in the model that features a constant return-to-scale

Cobb-Douglas technology. The output of the firm is given by its production function

which depends on hours worked in the market (hMt), the business capital stock (kMt) as

well as on the available technology (zMt).

yt = kθMt(zMthMt)
1−θ (6)

The firm then maximizes profits by choosing the input factors kMt and hMt.

max
kMt,hMt

Πt = yt − rtkMt − wthMt (7)

s.t. yt = kθMt(zMthMt)
1−θ (8)

4 Government

The model by Greenwood et al. (1993) also features a government component. The govern-

ment receives income from taxing market wages (wtτhhMt) and return on market capital

(rtτkkMt) minus a depreciation allowance (δMτkkMt). For simplicity, Greenwood et al.

(1993) assume that the income of the government is redistributed entirely via a lump-

sum transfer Tt back to the households, resulting in Gt = 0. Combining all the derived

assumptions, we arrive at the government spending equation:

Gt = wtτhhMt + rtτkkMt − δMτkkMt − Tt = 0 (9)
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5 Capital

Investment augments the capital stock according to the following law of motion:

kt+1 = (1− δM )kMt + (1− δH)kHt + xt (10)

where xt = xMt + xHt is total investment. The aggregate capital stock can be divided

between business (or market) and household capital at a point in time according to

kt = kMt + kHt. We assume that capital can be freely transformed between the home

and market, although it may depreciate at different rates in the two sectors. Therefore,

investments in the two capital goods are defined by

xMt = kMt+1 − (1− δM )kMt (11)

xHt = kHt+1 − (1− δH)kHt (12)

6 Technology

The evolution of technology in the model by Greenwood et al. (1993) consists of two

parts split up between the ”market” world and the ”home production” world. First,

zMt and zHt are shocks representing technological changes in the market and the home

respectively. Both variables grow at the same rate, such that we end up with zMt = λtz̃Mt

and zHt = λtz̃Ht. The second part of technology evolution is given by so-called innovations

ϵMt+1 and ϵHt+1; the first concerns market technology whilst the second affects home

technology. Summing up, we arrive at the following evolution of technology, where ρM

and ρH are parameters that measure the persistence of the respective shocks.

log(z̃Mt+1) = ρM log(z̃Mt) + ϵMt+1, ϵMt ∼ N(0, σ2
M ) (13)

log(z̃Ht+1) = ρH log(z̃Ht) + ϵHt+1, ϵHt ∼ N(0, σ2
H) (14)

Note: In equations (13) and (14), we used the deflated values of the technology shocks, denoted by tildes

above the variables.

The variance of the technology shock is defined such that log(z̃1−θ
Mt ) and log(z̃1−θ

Ht ) have a

standard deviation of 0.007. By taking the log of z̃Ht and plugging in the LHS of (14), we

obtain the following expression:

log(z̃1−θ
Ht ) = (1− θ) log(z̃Ht) = (1− θ)ρ log(z̃Ht−1) + (1− θ)ϵHt (15)
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This implies (1 − θ)ϵHt ∼ N(0,

=0.0072︷ ︸︸ ︷
(1− θ)2σ2

H), we can then derive σH = 0.007
1−θ . The same

arguments remain valid for the standard deviation σM .

7 Variables and Parameters

In this section, we present endogenous variables for the non-deflated general equilibrium

in Table 1, the exogenous variables in Table 2, and the parameters in Table 3. We will

update the reader during the text if the variables are denoted in levels or logs or if the

variables are deflated or not.
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Table 1: Endogenous Variables

Meaning

aC Total consumption

acH Goods and services produced in the home

acM Goods and services purchased in the market

bhH Labour hours spent working in the household

bhM Labour hours spent working in the market

bl Leisure time (1− hH − hM )

ck Total capital

ckH Household capital

ckM Market capital

ar Price at which business capital can be rented to firms

bT Lump-sum transfer payment from the government

bw Real wage rate in the market

bx Total investment

bxH Investment in household capital

bxM Investment in business capital

by Market output

czH Technology level in the home

czM Technology level in the market

cz̃H Shock resulting from technological changes in the home

cz̃M Shock resulting from technological changes in the market

Note: In the deflated model the technology level equals the shock resulting

from technology changes.

a denotes forward-looking variables (jumpers)

b denotes static variables

c denotes state variables

The innovations ϵMt and ϵHt are independent and identically distributed over time (see

section 6) and feature a simultaneous correlation of γ.

8



Table 2: Exogenous Variables

Meaning Standard deviation

ϵH Innovations in the home σH

ϵM Innovations in the market σM

Note: See section 6 for the derivation of σM and σH .

The last table contains all parameters of this model. Note, that the parameter e < 1

controls the household’s willingness to substitute between cMt and cHt the larger is e, the

greater this willingness to substitute market consumption for home consumption. Similar

for Ψ < 1, which describes the willingness to substitute between capital and labor in the

general home production function stated in section 15.2.
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Table 3: Parameters

Meaning Parameter value

a Share of cMt of total consumption see footnote

b Weight factor of consumption vis-a-vis leisure see footnote

e Willingness of a household to substitute between market a0, b/d 2
3 ,

c0.4

consumption cMt and home consumption cHt

β Discount factor 0.9898

δH Depreciation rate on household capital 0.0235

δM Depreciation rate on business capital (tax-deductible) 0.0235

η Capital share in the home production function 0.3245

γ Measures the household’s incentive, to move economic a/b 2
3 ,

c0, d0.99

activity between the home and the market

ρH Persistence of market technology shock 0.95

ρM Persistence of home technology shock 0.95

σH Standard deviation of innovations in the household 0.007
1−θ

σM Standard deviation of innovations in the market 0.007
1−θ

τk Tax rate on capital income 0.70

τh Tax rate on labour income 0.25

θ Capital share in the market production function 0.2944

λ Growth rate of all endogenous variables besides 1.004674

hMt, hHt, lt and rt

Ψ Willingness of a household to substitute between d-0.5017

capital kHt and time hHt in the home production

Note: We will determine a and b in dependence of the steady state values. λ is determined such

that it matches the quarterly growth rate of output in the U.S. Data.

a Model with home production minimized

b Model with increased willingness to substitute between home and market

c Model with increased incentive to substitute between home and market

d Model with a more general home production function and highly correlated technology shocks
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8 Maximization Problems

8.1 Household

The household chooses hMt, hHt, kHt, and kMt to maximize lifetime utility, subject to the

constraints given below.

max
hHt,hMt,kHt,kMt

U =
∞∑
t=0

βt (
b

e
log(Ce

t ) + (1− b) log(lt))︸ ︷︷ ︸
u(Ct,lt)=u(cMt,cHt,hMt.hHt)

s.t. C = (aceMt + (1− a)ceHt)
1
e

lt = 1− hHt − hMt

cMt = wt(1− τh)hMt + rt(1− τk)kMt + δMτkkMt

+ Tt − xMt − xHt

cHt = kηHt(zHthHt)
1−η︸ ︷︷ ︸

=g(hHt,kHt,zHt)

xMt = kMt+1 − (1− δM )kMt

xHt = kHt+1 − (1− δH)kHt

xt = xMt + xHt

kt = kMt + kHt

kt+1 = (1− δM )kMt + (1− δH)kHt + xt

Plugging in all constraints in the household’s maximization problem yields the following

unconstrained maximization problem:

max
hHt,hMt,kHt,kMt

U =
∞∑
t=0

βt(
b

e
log[a(wt(1− τh)hMt + rt(1− τk)kMt + δmτkkMt +Tt − kMt+1

+(1−δm)kMt−kHt+1+(1−δh)kHt)
e+(1−a)(kηHt(zHthHt)

1−η)e)]+(1−b)log(1−hHt−hMt))

(16)
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8.1.1 First order conditions of the household

Taking the derivatives with respect to the choice variables of the household hHt, hMt, kHt,

and kMt result in the first order conditions of the household evaluated at date t.

hHt : (1− a)b(1− η)C−e
t ceHth

−1
Ht︸ ︷︷ ︸

=u2(t)g1(t)

= (1− b)l−1
t︸ ︷︷ ︸

=u3(t)

(17)

hMt : ab(1− τh)C
−e
t ce−1

Mt wt︸ ︷︷ ︸
=u1(t)(1−τh)wt

= (1− b)l−1
t︸ ︷︷ ︸

=u4(t)

(18)

kHt : a(1− δH)C−e
t ce−1

Mt︸ ︷︷ ︸
=u1(t)(1−δH)

+(1− a)ηC−e
t ceHtk

−1
Ht︸ ︷︷ ︸

=u2(t)g2(t)

= aβ−1C−e
t−1c

e−1
Mt−1︸ ︷︷ ︸

=β−1u1(t−1)

(19)

kMt : a(rt(1− τk) + δMτk + 1− δM )C−e
t ce−1

Mt︸ ︷︷ ︸
=(rt(1−τk)+δM τk+1−δM )u1(t)

= aβ−1C−e
t−1c

e−1
Mt−1︸ ︷︷ ︸

=β−1u1(t−1)

(20)

Note: All terms below each equation equal the first-order condition expressions in Greenwood et al. (1993).

Equations (17) and (18) are the efficiency conditions concerning the allocation of labor

between the market sector and the home sector. Take equation (18) as an example for

said efficiency conditions. The RHS of the equation gives you the experienced disutility

of a household by allocating one extra unit of labor to market production. Whilst the

LHS represents the gain in a household’s utility from allocating one extra unit of labor to

market production. Intuitively, the benefit comes from a higher market production which

will increase a household’s utility via higher consumption through higher labor income.

On the other hand equations (19) and (20) are the efficiency conditions for the allo-

cation of capital. Take here equation (19) as an example. Let’s assume the household

decides at period t − 1 to purchase one extra unit of household capital at the expense of

consuming goods from market production. The disutility of the assumed action is given

by the RHS. Whilst the LHS shows the increase in utility in period t. The increase results

from higher production in period t thanks to the extra capital unit purchased in period

t − 1 (corresponds to u2(t)g2(t)) as well as a wealth increase of the household from the

extra capital unit purchased in t − 1 (corresponds to u1(t)(1 − δh)). Additionally, both

the market and home production budget constraints hold with equality.
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8.2 Firm

The firm in this model maximizes its profits by choosing the input factors kMt and hMt.

max
kMt,hMt

Πt = yt − rtkMt − wthMt

s.t. yt = kθMt(zMthMt)
1−θ

8.2.1 First order conditions of the firm

The first-order conditions for the firm’s problem are stated below.

kMt : θytk
−1
Mt = rt (21)

hMt : (1− θ)yth
−1
Mt = wt (22)

The firm hires labor for wt and rents capital for rt up to the point where marginal products

equal factor prices.

8.3 Government

Government expenditures are assumed to be equal to zero, thus the government redis-

tributes all income back to the households via a lump-sum transfer.

Gt = wtτhhMt + rtτkkMt − δMτkkMt − Tt = 0

9 General Equilibrium without Deflating

The competitive equilibrium of this model consists of the utility-maximizing household and

profit-maximizing firm. Both agents act on markets such that all markets clear, according

to the feasibility condition. In equilibrium, the economy converges to a balanced growth

path, where all endogenous variables grow at a constant rate λ. Additionally, feasibility

implies that market output is allocated across market consumption, total investment, and

government spending, but in our case, government spending equals to zero (see section 4),

this results in the resource constraint.

yt = cMt + xt (23)
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The remaining equilibrium conditions consist of the FOCs derived in the previous section

of the utility-maximizing household and profit-maximizing firm.

(1− a)b(1− η)C−e
t ceHth

−1
Ht = (1− b)l−1

t (24)

ab(1− τh)(1− θ)C−e
t ce−1

Mt yth
−1
Mt = (1− b)l−1

t (25)

βC−e
t [a(1− δH)ce−1

Mt + (1− a)ηceHtk
−1
Ht ] = aC−e

t−1c
e−1
Mt−1 (26)

β[rt(1− τk) + δMτk + 1− δM ]C−e
t ce−1

Mt = C−e
t−1c

e−1
Mt−1 (27)

θytk
−1
Mt = rt (28)

(1− θ)yth
−1
Mt = wt (29)

And the remaining constraints of the household, the firm and the government are

yt = kθMt(zMthMt)
1−θ (30)

Ct = (aceMt + (1− a)ceHt)
1
e (31)

lt = 1− hHt − hMt (32)

cHt = kηHt(zHthHt)
1−η (33)

xMt = kMt+1 − (1− δM )kMt (34)

xHt = kHt+1 − (1− δH)kHt (35)

xt = xMt + xHt (36)

kt = kMt + kHt (37)

Tt = wtτhhMt + rtτkkMt − δMτkkMt (38)

The following equations restate the technology shock for the home and market.

zMt = λtz̃Mt

zHt = λtz̃Ht

log(z̃Mt+1) = ρM log(z̃Mt) + ϵMt+1 (39)

log(z̃Ht+1) = ρH log(z̃Ht) + ϵHt+1 (40)

10 General Equilibrium with Deflating

Since this model assumes a balanced growth path, all endogenous variables grow at the

same constant rate λ. Only the time allocations hHt and hMt (therefore lt as well) remain

constant. From equation (28), we know, that rt has to remain constant as well. The
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deflated endogenous variables are defined below (where ṽt denotes the deflated value of

variable vt).

C̃t =
Ct

λt

c̃Mt =
cMt

λt

c̃Ht =
cHt

λt

k̃t =
kt
λt

k̃Mt =
kMt

λt

k̃Ht =
kHt

λt

x̃t =
xt
λt

x̃Mt =
xMt

λt

x̃Ht =
xHt

λt

ỹt =
yt
λt

T̃t =
Tt

λt

w̃t =
wt

λt

z̃Mt =
zMt

λt

z̃Ht =
zHt

λt

The deflated general equilibrium conditions from the households and firms’ maximization

problem are stated below. We replace the non-deflated value with the deflated value times

the growth rate until time t (e.g., ṽtλ
t = vt). At first, we deflate the resource constraint
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and the FOCs of the household and firm:

ỹtλ
t = c̃Mtλ

t + x̃tλ
t ⇒ ỹt = c̃Mt + x̃t (41)

(1− a)b(1− η)(C̃tλ
t)−e(c̃Htλ

t)eh−1
Ht = (1− b)l−1

t

⇒ (1− a)b(1− η)C̃−e
t c̃eHth

−1
Ht = (1− b)l−1

t (42)

ab(1− τh)(1− θ)(C̃tλ
t)−e(c̃Mtλ

t)e−1ỹtλ
th−1

Mt = (1− b)l−1
t

⇒ ab(1− τh)(1− θ)C̃−e
t c̃e−1

Mt ỹth
−1
Mt = (1− b)l−1

t (43)

β(C̃tλ
t)−e[a(1− δH)(c̃Mtλ

t)e−1 + (1− a)η(c̃Htλ
t)e(kHtλ

t)−1] = a(C̃t−1λ
t−1)−e(c̃Mt−1λ

t−1)e−1

⇒ βC̃−e
t [a(1− δH)c̃e−1

Mt + (1− a)ηc̃eHtk
−1
Ht ] = aλC̃−e

t−1c̃
e−1
Mt−1 (44)

β[rt(1− τk) + δMτk + 1− δM ](C̃tλ
t)−e(c̃Mtλ

t)e−1 = (C̃t−1λ
t−1)−e(c̃Mt−1λ

t−1)e−1

⇒ β[rt(1− τk) + δMτk + 1− δM ]C̃−e
t c̃e−1

Mt = λC̃−e
t−1c̃

e−1
Mt−1 (45)

θỹtλ
t(k̃Mtλ

t)−1 = rt ⇒ θỹtk̃
−1
Mt = rt (46)

(1− θ)ỹtλ
th−1

Mt = w̃tλ
t ⇒ (1− θ)ỹth

−1
Mt = w̃t (47)

And then the remaining constraints:

ỹtλ
t = (k̃Mtλ

t)θ(z̃Mtλ
thMt)

1−θ ⇒ ỹt = k̃θMt(z̃MthMt)
1−θ (48)

C̃tλ
t = (a(c̃Mtλ

t)e + (1− a)(c̃Htλ
t)e)

1
e ⇒ C̃t = (ac̃eMt + (1− a)c̃eHt)

1
e (49)

lt = 1− hHt − hMt (50)

c̃Htλ
t = (k̃Htλ

t)η(z̃Htλ
thHt)

1−η ⇒ c̃Ht = k̃ηHt(z̃HthHt)
1−η (51)

x̃Mtλ
t = k̃Mt+1λ

t+1 − (1− δM )k̃Mtλ
t ⇒ x̃Mt = λk̃Mt+1 − (1− δM )k̃Mt (52)

x̃Htλ
t = k̃Ht+1λ

t+1 − (1− δH)k̃Htλ
t ⇒ x̃Ht = λk̃Ht+1 − (1− δH)k̃Ht (53)

x̃tλ
t = x̃Mtλ

t + x̃Htλ
t ⇒ x̃t = x̃Mt + x̃Ht (54)

k̃tλ
t = k̃Mtλ

t + k̃Htλ
t ⇒ k̃t = k̃Mt + k̃Ht (55)

T̃tλ
t = w̃tλ

tτhhMt + rtτkk̃Mtλ
t − δMτkk̃Mtλ

t

⇒ T̃t = w̃tτhhMt + rtτkk̃Mt − δMτkk̃Mt (56)

log(z̃Mt+1) = ρM log(z̃Mt) + ϵMt+1 (57)

log(z̃Ht+1) = ρH log(z̃Ht) + ϵHt+1 (58)

The previously stated equations constitute the deflated general equilibrium of the model,

where the variables are denoted in levels.
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11 Steady State

For the steady state calculation, we assume hH , hM , and r to be fixed. On the contrary,

the parameter values a, b, and β are calculated based on the resulting steady state values of

specific variables. Below are the equations from the deflated general equilibrium without

the time indices.

ỹ = c̃M + x̃ (59)

(1− a)b(1− η)C̃−ec̃eHh−1
H = (1− b)l−1 (60)

ab(1− τh)(1− θ)C̃−ec̃e−1
M ỹh−1

M = (1− b)l−1 (61)

βC̃−e[a(1− δH)c̃e−1
M + (1− a)ηc̃eH k̃−1

H ] = aλC̃−ec̃e−1
M

⇒ (1− a)ηc̃eHk−1
H = ac̃e−1

M (λβ−1 − 1 + δH) (62)

β[r(1− τk) + δMτk + 1− δM ]C̃−ec̃e−1
M = λC̃−ec̃e−1

M

⇒ r(1− τk) + δMτk + 1− δM = λβ−1 (63)

θỹk̃−1
M = r (64)

(1− θ)ỹh−1
M = w̃ (65)

ỹ = k̃θM (z̃MhM )1−θ (66)

C̃ = (ac̃eM + (1− a)c̃eH)
1
e (67)

l = 1− hH − hM (68)

c̃H = k̃ηH(z̃HhH)1−η (69)

x̃M = λk̃M − (1− δM )k̃M ⇒ x̃M = (λ− 1 + δM )k̃M (70)

x̃H = λk̃H − (1− δH)k̃H ⇒ x̃Ht = (λ− 1 + δH)k̃H (71)

x̃ = x̃M + x̃H (72)

k̃ = k̃M + k̃H (73)

T̃ = w̃τhhM + rτkk̃M − δMτkk̃M (74)

log(z̃M ) = ρM log(z̃M ) (75)

log(z̃H) = ρH log(z̃H) (76)

From the last two equations, we can derive z̃∗M = z̃∗H = 1 (note, that ϵM = ϵH = 0 in

steady state). In the next step, we determine the r∗ based on the FOC of the household

w.r.t. kM

r∗ =
λβ−1 − 1 + δM − δMτk

1− τk
(77)
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Use the firms’s FOC w.r.t. kM to get

k̃M
ỹ

=
θ

r
(78)

Divide the production function by k̃M and rearrange to get

k̃M
hM

= z̃M

(
k̃M
ỹ

) 1
1−θ

(79)

k̃M/ỹ and k̃M/hM are already defined, hence from the firm’s FOC w.r.t. hM

w̃∗ = (1− θ)
ỹ

hM
= (1− θ)

(
k̃M
ỹ

)−1
k̃M
hM

(80)

hM and kM/hM are defined already, hence from the production function

ỹ∗ =

(
k̃M
hM

)θ

hM z̃1−θ
M (81)

Combine the household’s FOC w.r.t. hM and hH

(1− a)(1− η)c̃eHh−1
H

a(1− τh)c̃
e−1
M w̃∗ = 1 ⇒

c̃eH
c̃e−1
M

=
a(1− τh)w̃

∗hH
(1− a)(1− η)

(82)

Rearrange the FOC of the household w.r.t. kH and plug in the previous expression

k̃∗H =
c̃eH
c̃e−1
M

(1− a)η

a(λβ−1 − 1 + δH)
=

η(1− τh)w̃
∗hH

(1− η)(λβ−1 − 1 + δH)
(83)

The remaining steady states of the endogenous variables can be obtained by plugging in

the previous results.

k̃∗M =
k̃M
hM

hM (84)

k̃∗ = k̃∗H + k̃∗M (85)

x̃∗M = (λ− 1 + δM )k̃∗M (86)

x̃∗H = (λ− 1 + δM )k̃∗H (87)

x̃∗ = x̃∗H + x̃∗M (88)

c̃∗M = ỹ∗ + x̃∗M + x̃∗H (89)

c̃∗H = k̃∗ηH (z̃∗HhH)1−η (90)

T̃ ∗ = w̃∗τhhM + r∗τkk̃
∗
M − δMτkk̃

∗
M (91)

To determine the parameter a, we solve the household FOC w.r.t. kH for a

a = [η−1c̃∗e−1
M c̃∗−e

H k̃∗H(λβ−1 − 1 + δH) + 1]−1 (92)
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After determining the value of a, we can derive the steady state of the total consumption.

C̃∗ = (a(c̃∗M )e + (1− a)(c̃∗H)e)
1
e (93)

Similar to the parameter a, we solve the household FOC w.r.t. hH for b

b = [(1− a)(1− η)C̃∗−ec̃∗eHh−1
H l + 1]−1 (94)

12 Log-Transformation

In this section, we apply the log-transformation to every variable in the deflated model

for a more intuitive interpretation of the results. Hence, we make use of the fact that

v̂t = log(ṽt) ⇒ exp(v̂t) = ṽt and exchange in our model every variable ṽt with exp(v̂t).

Firstly, we apply the transformation to the resource constraint.

exp(ŷt) = exp(ĉMt) + exp(x̂t) (95)

Secondly, to the FOCs of the household and the firm

(1− a)b(1− η) exp(Ĉt)
−e exp(ĉHt)

e exp(ĥHt)
−1 = (1− b) exp(l̂t)

−1

⇒ (1− a)b(1− η) exp(−Ĉte) exp(ĉHte) exp(−ĥHt) = (1− b) exp(−lt)

⇒ (1− a)b(1− η) exp(−Ĉte+ ĉHte− ĥHt)

= (1− b) exp(−lt) (96)

ab(1− τh)(1− θ) exp(Ĉt)
−e exp(ĉMt)

e−1 exp(ŷt) exp(ĥMt)
−1 = (1− b) exp(l̂t)

−1

⇒ ab(1− τh)(1− θ) exp(−Ĉte) exp(ĉMt(e− 1)) exp(ŷt) exp(−ĥMt) = (1− b) exp(−l̂t)

⇒ ab(1− τh)(1− θ) exp(−Ĉte+ ĉMt(e− 1) + ŷt − ĥMt)

= (1− b) exp(−l̂t) (97)

β exp(Ĉt)
−e[a(1− δH) exp(ĉMt)

e−1 + (1− a)η exp(ĉHt)
e exp(k̂Ht)

−1] = aλ exp(Ĉt−1)
−e exp(ĉMt−1)

e−1

⇒ β exp(−Ĉte)[a(1− δH) exp(ĉMt(e− 1)) + (1− a)η exp(ĉHte− k̂Ht)]

= aλ exp(−Ĉt−1e+ ĉMt−1(e− 1)) (98)

β[exp(r̂t)(1− τk) + δMτk + 1− δM ] exp(Ĉt)
−e exp(ĉMt)

e−1 = λ exp(Ĉt−1)
−e exp(ĉMt−1)

e−1

⇒ β[exp(r̂t)(1− τk) + δMτk + 1− δM ] exp(−Ĉte+ ĉMt(e− 1))

= λ exp(−Ĉt−1e+ ĉMt−1(e− 1)) (99)
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And thirdly, to the remaining constraints in the model.

θ exp(ŷt) exp(k̂Mt)
−1 = exp(r̂t) ⇒ θ exp(ŷt − k̂Mt) = exp(r̂t) (100)

(1− θ) exp(ŷt) exp(ĥMt)
−1 = exp(ŵt) ⇒ (1− θ) exp(ŷt − ĥMt) = exp(ŵt) (101)

exp(ŷt) = exp(k̂Mt)
θ(exp(ẑMt) exp(ĥMt))

1−θ

⇒ exp(ŷt) = exp(θk̂Mt + (1− θ)(ẑMt + ĥMt)) (102)

exp(Ĉt) = (a exp(ĉMt)
e + (1− a) exp(ĉHt)

e)
1
e

⇒ exp(Ĉt) = (a exp(ĉMte) + (1− a) exp(ĉHte))
1
e (103)

exp(l̂t) = 1− exp(ĥHt)− exp(ĥMt) (104)

exp(ĉHt) = exp(k̂Ht)
η(exp(ẑHt) exp(ĥHt))

1−η

⇒ exp(ĉHt) = exp(ηk̂Ht + (1− η)(ẑHt + ĥHt)) (105)

exp(x̂Mt) = λ exp(k̂Mt+1)− (1− δM ) exp(k̂Mt) (106)

exp(x̂Ht) = λ exp(k̂Ht+1)− (1− δH) exp(k̂Ht) (107)

exp(x̂t) = exp(x̂Mt) + exp(x̂Ht) (108)

exp(k̂t) = exp(k̂Mt) + exp(k̂Ht) (109)

exp(T̂t) = exp(ŵt)τh exp(ĥMt) + exp(r̂t)τk exp(k̂Mt)

− δMτk exp(k̂Mt)

⇒ exp(T̂t) = exp(ŵt + ĥMt)τh + exp(r̂t + k̂Mt)τk

− δMτk exp(k̂Mt) (110)

ẑMt+1 = ρM ẑMt + ϵMt+1 (111)

ẑHt+1 = ρH ẑHt + ϵHt+1 (112)

13 Impulse Response Functions

Dynare provides us with the Impulse Response Functions (IRF) of log(ỹt). However, only

the IRF of log(yt) is of interest. The IRFs are with respect to ϵM and ϵH , but to simplify

the next derivation, we use ϵ.

∂ log(yt)

∂ϵt
=

∂ log(ỹtλ
t)

∂ϵt
=

∂ log(ỹt)

∂ϵt
+

∂ log(λt)

∂ϵt︸ ︷︷ ︸
=0

=
∂ log(ỹt)

∂ϵt
=

∂ŷt
∂ϵt

Based on the assumption, that the growth rate λ is constant, we can directly use the

Dynare output of the IRFs for ŷt = log(ỹt).
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14 Summary

In this section, we list all the equations as used in the Dynare code for the deflated log-

transformed model. The variables and parameters remain as listed in section 7.

exp(ĉMt) + exp(x̂t) = exp(ŷt) (113)

(1− a)b(1− η) exp(−Ĉte+ ĉHte− ĥHt)

= (1− b) exp(−lt) (114)

ab(1− τh)(1− θ) exp(−Ĉte+ ĉMt(e− 1) + ŷt − ĥMt)

= (1− b) exp(−l̂t) (115)

β exp(−Ĉte)[a(1− δH) exp(ĉMt(e− 1)) + (1− a)η exp(ĉHte− k̂Ht)]

= aλ exp(−Ĉt−1e+ ĉMt−1(e− 1)) (116)

β[exp(r̂t)(1− τk) + δMτk + 1− δM ] exp(−Ĉte+ ĉMt(e− 1))

= λ exp(−Ĉt−1e+ ĉMt−1(e− 1)) (117)

θ exp(ŷt − k̂Mt) = exp(r̂t) (118)

(1− θ) exp(ŷt − ĥMt) = exp(ŵt) (119)

exp(θk̂Mt + (1− θ)(ẑMt + ĥMt)) = exp(ŷt) (120)

(a exp(ĉMte) + (1− a) exp(ĉHte))
1
e = exp(Ĉt) (121)

1− exp(ĥHt)− exp(ĥMt) = exp(l̂t) (122)

exp(ηk̂Ht + (1− η)(ẑHt + ĥHt)) = exp(ĉHt) (123)

λ exp(k̂Mt+1)− (1− δM ) exp(k̂Mt) = exp(x̂Mt) (124)

λ exp(k̂Ht+1)− (1− δH) exp(k̂Ht) = exp(x̂Ht) (125)

exp(x̂Mt) + exp(x̂Ht) = exp(x̂t) (126)

exp(k̂Mt) + exp(k̂Ht) = exp(k̂t) (127)

exp(ŵt + ĥMt)τh + exp(r̂t + k̂Mt)τk − δMτk exp(k̂Mt) = exp(T̂t) (128)

ρM ẑMt + ϵMt+1 = ẑMt+1 (129)

ρH ẑHt + ϵHt+1 = ẑHt+1 (130)
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15 Extensions

15.1 Minimal Role of Home Production

In the first extension to their model, Greenwood et al. (1993) set the parameter e = 0,

which implies the elasticity between cMt and cHt to be unity. This model aims to minimize

the role of home production and according to Greenwood et al. (1993) produces results

similar to a model without home production. This model configuration is also used in

Greenwood and Hercowitz (1991) or Greenwood et al. (2020).

By setting e = 0, the function for total consumption (3) reduces to a Cobb-Douglas

function (i.e. Ct = caMtc
1−a
Ht ), this yields a simplified instantaneous utility function V :

V = ab log(cMt) + (1− a)b log(cHt) + (1− b) log(1− hMt − hHt) (131)

By plugging the market budget and home production constraint into the objective function

V , we derive the FOCs of the lifetime utility of the household.

hHt : (1− a)b(1− η)h−1
Ht = (1− b)l−1

t (132)

hMt : ab(1− τh)c
−1
Mtwt = (1− b)l−1

t (133)

kHt : a(1− δH)c−1
Mt + (1− a)ηk−1

Ht = aβ−1c−1
Mt−1 (134)

kMt : a(rt(1− τk) + δMτk + 1− δM )c−1
Mt = aβ−1c−1

Mt−1 (135)

Since the firm’s profit maximization problem is not changed, the FOCs of the firm are as

stated in the previous sections. In the next step, we deflate the updated FOCs and the

Cobb-Douglas function for the total consumption as in section 10:

(1− a)b(1− η)h−1
Ht = (1− b)l−1

t (136)

ab(1− τh)(λ
tc̃Mt)

−1λtw̃t = (1− b)l−1
t

⇒ ab(1− τh) ˜cMt
−1w̃t = (1− b)l−1

t (137)

a(1− δH)(λtc̃Mt)
−1 + (1− a)η(λtk̃Ht)

−1 = β−1(λt−1c̃Mt−1)
−1

⇒ a(1− δH)c̃−1
Mt + (1− a)ηk̃−1

Ht = aβ−1λc̃−1
Mt−1 (138)

(rt(1− τk) + δMτk + 1− δM )(λtc̃Mt)
−1 = β−1(λt−1c̃Mt−1)

−1

⇒ (rt(1− τk) + δMτk + 1− δM )c̃−1
Mt = β−1λc̃−1

Mt−1 (139)

λtC̃t = (λtc̃Mt)
a(λtc̃Ht)

1−a ⇒ C̃t = c̃aMtc̃
1−a
Ht (140)

In the final step, we log-transform the updated FOCs the new expression for the total
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consumption as in section 12.

(1− a)b(1− η) exp(ĥHt)
−1 = (1− b) exp(l̂t)

−1

⇒ (1− a)b(1− η) exp(−ĥHt) = (1− b) exp(−l̂t) (141)

ab(1− τh) exp(ĉMt)
−1 exp(ŵt) = (1− b) exp(l̂t)

−1

⇒ ab(1− τh) exp(−ĉMt + ŵt) = (1− b) exp(−l̂t) (142)

a(1− δH) exp(ĉMt)
−1 + (1− a)η exp(k̂Ht)

−1 = aβ−1λ exp(ĉMt−1)
−1

⇒ a(1− δH) exp(−ĉMt) + (1− a)η exp(−k̂Ht) = aβ−1λ exp(−ĉMt−1) (143)

[exp(r̂t)(1− τk) + δMτk + 1− δM ] exp(ĉMt)
−1 = β−1λ exp(ĉMt−1)

−1

⇒ [exp(r̂t)(1− τk) + δMτk + 1− δM ] exp(−ĉMt) = β−1λ exp(−ĉMt−1) (144)

exp(Ĉt) = exp(ĉMt)
a exp(ĉHt)

1−a

⇒ exp(Ĉt) = exp(aĉMt + (1− a)ĉHt) (145)

15.1.1 Steady State

We can recover the steady state, as we did in section 11, by simply setting e = 0. Just

the calculation of the steady state total consumption in equation (93) changes to

C∗ = (c∗M )a(c∗H)1−a. (146)

15.1.2 Summary

We just have to exchange equation (121) with (145), therefore we refrain from listing all

equations again. The other equations are recovered by setting e = 0.

15.2 General Home Production Function

In an earlier paper Greenwood and Hercowitz (1991) assume a more general home produc-

tion function, which has not been used up to this point of the model. The more general

home production function is given by:

cHt = g(hHt, kHt, zHt) = [ηkΨHt + (1− η)(zHthHt)
Ψ]

1
Ψ (147)

It’s also assumed that the technology shocks zH and zM are highly correlated such that

once a shock hits the market it highly influences the home as well. This allows for the

case when a positive shock arrives to shift out hours from home production to market
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production whilst at home the working hours increase in efficiency as well. The FOCs of

the household w.r.t. hHt and kHt are updated as follows:

hHt : (1− a)b(1− η)C−e
t ce−Ψ

Ht zΨHth
Ψ−1
Ht︸ ︷︷ ︸

=u2(t)g1(t)

= (1− b)l−1
t︸ ︷︷ ︸

=u3(t)

(148)

kHt : a(1− δH)C−e
t ce−1

Mt︸ ︷︷ ︸
=u1(t)(1−δH)

+(1− a)ηC−e
t ce−Ψ

Ht kΨ−1
Ht︸ ︷︷ ︸

=u2(t)g2(t)

= aβ−1C−e
t−1c

e−1
Mt−1︸ ︷︷ ︸

=β−1u1(t−1)

(149)

The remaining FOCs of the household and the firm do not change with this general home

production function. In the next step, we deflate the updated FOCs and general home

production as in section 10:

(1− a)b(1− η)(λtC̃t)
−e(λtc̃Ht)

e−Ψ(λtz̃Ht)
ΨhΨ−1

Ht = (1− b)l−1
t

⇒ (1− a)b(1− η)C̃−e
t c̃e−Ψ

Ht z̃ΨHth
Ψ−1
Ht = (1− b)l−1

t (150)

β(λtC̃t)
−e[a(1− δH)(λtc̃Mt)

e−1 + (1− a)η(λtc̃Ht)
e−Ψ(λtk̃Ht)

Ψ−1] = a(λt−1C̃t−1)
−e(λt−1c̃Mt−1)

e−1

⇒ βC̃−e
t [a(1− δH)c̃e−1

Mt + (1− a)ηc̃e−Ψ
Ht k̃Ψ−1

Ht ] = aλC̃−e
t−1c̃

e−1
Mt−1 (151)

λtc̃Ht = [η(λtk̃Ht)
Ψ + (1− η)(λtz̃HthHt)

Ψ]
1
Ψ

⇒ c̃Ht = [ηk̃ΨHt + (1− η)(z̃HthHt)
Ψ]

1
Ψ (152)

In the final step, we log-transform the updated FOCs as in section 12.

(1− a)b(1− η) exp(Ĉt)
−e exp(ĉHt)

e−Ψ exp(ẑHt)
Ψ exp(ĥHt)

Ψ−1

= (1− b) exp(l̂t)
−1

⇒ (1− a)b(1− η) exp[ĉHt(e−Ψ) + ẑHtΨ+ ĥHt(Ψ− 1)− Ĉte]

= (1− b) exp(−l̂t) (153)

β exp(Ĉt)
−e[a(1− δH) exp(ĉMt)

e−1 + (1− a)η exp(ĉHt)
e−Ψ exp(k̂Ht)

Ψ−1]

= aλ exp(Ĉt−1)
−e exp(ĉMt−1)

e−1

⇒ β exp(−Ĉte){a(1− δH) exp(ĉMt(e− 1)) + (1− a)η exp[ĉHt(e−Ψ) + k̂Ht(Ψ− 1)]}

= aλ exp(−Ĉt−1e+ ĉMt−1(e− 1)) (154)

exp(ĉHt) = [η exp(k̂Ht)
Ψ + (1− η)(exp(ẑHt) exp(ĥHt))

Ψ]
1
Ψ

⇒ exp(ĉHt) = [η exp(k̂HtΨ) + (1− η) exp((ẑHt + ĥHt)Ψ)]
1
Ψ (155)
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15.2.1 Steady State

To calculate the steady state, we can simplify equations (150) - (152) as stated below:

(1− a)b(1− η)C̃−ec̃e−Ψ
H z̃ΨHhΨ−1

H = (1− b)l−1 (156)

βC̃−e[a(1− δH)c̃e−1
M + (1− a)ηc̃e−Ψ

H k̃Ψ−1
H ] = aλC̃−ec̃e−1

M

⇒ (1− a)ηc̃e−Ψ
H k̃Ψ−1

H = ac̃e−1
M (λβ−1 − 1 + δH) (157)

[ηk̃ΨH + (1− η)(z̃HhH)Ψ]
1
Ψ = c̃H (158)

To determine the steady state, we need to replace equation (82) with the following expres-

sion:

(1− a)(1− η)c̃e−Ψ
H hΨ−1

H z̃∗ΨH
a(1− τh)c̃

e−1
M w̃∗ = 1 ⇒

c̃e−Ψ
H

c̃e−1
M

=
a(1− τh)w̃

∗

(1− a)(1− η)hΨ−1
H z̃∗ΨH

(159)

Additionally, we have to update equation (83) as follows:

k̃∗H =

(
c̃e−Ψ
H

c̃e−1
M

(1− a)η

a(λβ−1 − 1 + δH)

) 1
1−ψ

=

(
η(1− τh)w̃

∗

(1− η)(λβ−1 − 1 + δH)hΨ−1
H z̃∗ΨH

) 1
1−ψ

(160)

Further, we have to replace equation (90) with the new definition of the general home

production function.

c̃∗H = [ηk̃∗ΨH + (1− η)(z̃∗HhH)Ψ]
1
Ψ (161)

Finally, we have to adjust the expressions (92) and (94) for the parameters a and b.

a = [η−1c̃∗e−1
M c̃∗Ψ−e

H k̃∗1−Ψ
H (λβ−1 − 1 + δH) + 1]−1 (162)

b = [(1− a)(1− η)C̃∗−ec̃∗e−Ψ
H hΨ−1

H z∗ΨH l + 1]−1 (163)

The remaining calculations of the steady state remain unchanged compared with the

standard model.
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15.2.2 Summary

Compared with section 14, we replace equations (114), (116) and (123) with the updated

expressions (153), (154) and (155).

exp(ĉMt) + exp(x̂t) = exp(ŷt) (164)

(1− a)b(1− η) exp[ĉHt(e−Ψ) + ẑHtΨ+ ĥHt(Ψ− 1)− Ĉte]

= (1− b) exp(−l̂t) (165)

ab(1− τh)(1− θ) exp(−Ĉte+ ĉMt(e− 1) + ŷt − ĥMt)

= (1− b) exp(−l̂t) (166)

β exp(−Ĉte){a(1− δH) exp(ĉMt(e− 1)) + (1− a)η exp[ĉHt(e−Ψ) + k̂Ht(Ψ− 1)]}

= aλ exp(−Ĉt−1e+ ĉMt−1(e− 1)) (167)

β[exp(r̂t)(1− τk) + δMτk + 1− δM ] exp(−Ĉte+ ĉMt(e− 1))

= λ exp(−Ĉt−1e+ ĉMt−1(e− 1)) (168)

θ exp(ŷt − k̂Mt) = exp(r̂t) (169)

(1− θ) exp(ŷt − ĥMt) = exp(ŵt) (170)

exp(θk̂Mt + (1− θ)(ẑMt + ĥMt)) = exp(ŷt) (171)

(a exp(ĉMte) + (1− a) exp(ĉHte))
1
e = exp(Ĉt) (172)

1− exp(ĥHt)− exp(ĥMt) = exp(l̂t) (173)

[η exp(k̂HtΨ) + (1− η) exp((ẑHt + ĥHt)Ψ)]
1
Ψ = exp(ĉHt) (174)

λ exp(k̂Mt+1)− (1− δM ) exp(k̂Mt) = exp(x̂Mt) (175)

λ exp(k̂Ht+1)− (1− δH) exp(k̂Ht) = exp(x̂Ht) (176)

exp(x̂Mt) + exp(x̂Ht) = exp(x̂t) (177)

exp(k̂Mt) + exp(k̂Ht) = exp(k̂t) (178)

exp(ŵt + ĥMt)τh + exp(r̂t + k̂Mt)τk − δMτk exp(k̂Mt) = exp(T̂t) (179)

ρM ẑMt + ϵMt+1 = ẑMt+1 (180)

ρH ẑHt + ϵHt+1 = ẑHt+1 (181)

26



References

Greenwood, Jeremy and Zvi Hercowitz, “The allocation of capital and time over the

business cycle,” Journal of political Economy, 1991, 99 (6), 1188–1214.

, Richard Rogerson, and Randall Wright, “Putting home economics into macroe-

conomics,” Federal Reserve Bank of Minneapolis Quarterly Review, 1993, 17 (3).

, , and , “6. Household Production in Real Business Cycle Theory,” in “frontiers

of Business cycle research,” Princeton University Press, 2020, pp. 157–174.

27


	Introduction
	Representative Household
	Representative Firm
	Government
	Capital
	Technology
	Variables and Parameters
	Maximization Problems
	Household
	Firm
	Government

	General Equilibrium without Deflating
	General Equilibrium with Deflating
	Steady State
	Log-Transformation
	Impulse Response Functions
	Summary
	Extensions
	Minimal Role of Home Production
	General Home Production Function


