Putting Home Economics into Macroeconomics Greenwood et al. (1993)

Manuel Bieri & Michael Wagner

Seminar: Macroeconomics and International Economics

June 2023

Table of Contents

Motivation

Model

Results

Future Research

Conclusion

Motivation

- ► Paper focuses on the home sector by introducing a home production function into a standard RBC model
 - Households can produce goods and services at home (substitute to market production)
- Why should you focus on the home sector?
 - 25 percent of discretionary time spent on unpaid work at home, in contrast to 33 percent spent on paid work
 - e.g. cooking, cleaning, caretaking
 - Investment in household capital exceeds investment in business capital by about 15 percent
 - e.g. consumer durables, housing
 - Value of household production between 20 and 50 percent of the value of GDP (Eisner, 1988)

Model

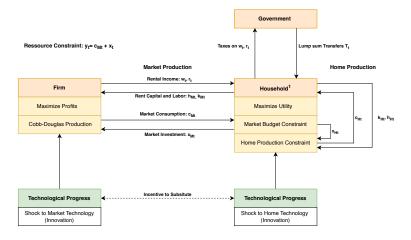


Figure: Constraints of agents: Household,

¹Willingness to substitute

Model Specifications

- ▶ Model 1: Home production minimized
- ► Model 2: Increased willingness to substitute between home and market consumption
- ▶ Model 3: Increased incentive to substitute resources between home and market sector
 - ▶ Note: Models 2 & 3 should deliver similar results
- ► Model 4: More general home production function and low incentive to substitute resources between the home and the market sector

Business Cycle Properties I

- ➤ Compare the business cycle properties of simulated models with U.S. data from 1947 to 1987
- Model 1 is the benchmark model
- Ratios of standard deviations
 - ► Total investments (x) relative to output
 - Market consumption (c_M) relative to output
 - Market hours (h_M) relative to output
 - Real wages or productivity (w) relative to output
 - Market hours relative to productivity
- Correlations
 - ► Market hours and productivity (c_M and w)
 - ightharpoonup Market and home investments (x_M and x_H)

Business Cycle Properties II

- ► Model 2 & 3 yield similar results
 - Ratios of standard deviations: More accurate than the benchmark
 - ► Correlations: Bad performance (comovement problem)
- ► Model 2a
 - ► Increasing standard deviation of home technology shock
 - More accurate correlation between the market hours and productivity
 - Worse performance in most other properties compared to the benchmark
- Model 4 and 4a
 - Setting elasticity of substitution in home production
 - More accurate correlation between the market and home investments
 - Worse performance in other properties compared to the benchmark

Discussion Results

- ▶ Better performance in terms of volatility than the benchmark
- Potential to improve the accuracy of comovement of variables
- ► Model calibration is important
 - Lacking evidence for some parameter values
 - E.g., the elasticity of substitution in home production
- Further results:
 - ► Detailed results of the business cycle properties and explanations to the comovement problem → Appendix
 - ► All Results (Dynare outputs, impulse response functions, ...): manuelbieri.ch/Greenwood_1993/

Existing Extension (Selection)

- Government spending and taxes
 - ► Christiano and Eichenbaum (1992)
 - McGrattan et al. (1993)
 - ► McGrattan et al. (1997)
- International markets
 - Canova and Ubide (1998)
- Market and home sector as complements
 - Fisher (1997)
- Endogenous growth arising from human capital accumulation
 - ► Einarsson and Marquis (1997)

Suggested Extensions (Selection)

- ► Multiple Sectors (Plosser, 1989)
- Introduce heterogeneity amongst the consumers
 - Evidence that the relative importance of the household production changes (Baxter and Jermann, 1999)
- Application of the home production model in other countries
 - Evidence for differences in the relative importance of the household sector between countries (Aguiar and Hurst, 2005)
 - ▶ Developed vs. developing countries (Hicks, 2015) Chart Time Use

Conclusion

- Adding a home production function to a standard RBC improves the model's ability to account for business cycle properties
- ► Fragile model
 - Depends highly on the parameters chosen
 - ► Little evidence for the parameter values
- Performance of the home production model only valid for U.S. post-war economy data

References I

- Aguiar, Mark and Erik Hurst, "Consumption versus Expenditure," Journal of Political Economy, 2005, 113 (5), 919-948
- Baxter, Marianne, "Are Consumer Durables Important for Business Cycles?," The Review of Economics and Statistics. 1996, *78* (1), 147–155.
- and Urban J. Jermann. "Household Production and the Excess Sensitivity of Consumption to Current Income," American Economic Review, September 1999, 89 (4), 902–920.
- Benhabib, Jess, Richard Rogerson, and Randall Wright. "Homework in Macroeconomics: Household Production and Aggregate Fluctuations," Journal of Political Economy, 1991, 99 (6), 1166-1187.

References II

- Canova, Fabio and Angel J. Ubide, "International business cycles, financial markets and household production," Journal of Economic Dynamics and Control, 1998, 22 (4), 545–572.
- Christiano, Lawrence J. and Martin Eichenbaum. "Current Real-Business-Cycle Theories and Aggregate Labor-Market Fluctuations," The American Economic Review, 1992, 82 (3), 430-450.
- Davis, Morris A. and Jonathan Heathcote, "Housing and the Business Cycle," International Economic Review, 2005, 46 (3), 751-784.
- Einarsson, Tor and Milton H. Marquis, "Home production with endogenous growth," Journal of Monetary Economics, 1997, 39 (3), 551-569.

References III

- **Eisner, Robert**, "Extended Accounts for National Income and Product," *Journal of Economic Literature*, 1988, 26 (4), 1611–1684.
- **Fisher, Jonas D. M.**, "Relative prices, complementarities and comovement among components of aggregate expenditures," *Journal of Monetary Economics*, 1997, 39 (3), 449–474.
- **Fisher, Jonas D. M.**, "Why Does Household Investment Lead Business Investment over the Business Cycle?," *Journal of Political Economy*, 2007, 115 (1), 141–168.
- **Greenwood, Jeremy**, Evolving Households: The Imprint of Technology on Life January 2019.
- _ and Zvi Hercowitz, "The allocation of capital and time over the business cycle," Journal of political Economy, 1991, 99 (6), 1188–1214.

References IV

References

- _ , Richard Rogerson, and Randall Wright, "Putting home economics into macroeconomics," Federal Reserve Bank of Minneapolis Quarterly Review, 1993, 17 (3).
- _ , _ , and _ , "6. Household Production in Real Business Cycle Theory," in "frontiers of Business cycle research," Princeton University Press, 2020, pp. 157–174.
- Hansen, Gary D. and Randall Wright, "The Labor Market in Real Business Cycle Theory," *Quarterly Review*, 1992, *16* (2).
- **Hicks, Daniel L.**, "Consumption Volatility, Marketization, and Expenditure in an Emerging Market Economy," *American Economic Journal: Macroeconomics*, 2015, 7 (2), 95–123.
- McGrattan, Ellen R., Richard Rogerson, and Randall Wright, "Household Production and Taxation in the Stochastic Growth Model," Federal Reserve Bank of Minneapolis, 1993.

Further Material

References V

References

- _ , _ , and _ , "An Equilibrium Model of the Business Cycle with Household Production and Fiscal Policy," *International Economic Review*, 1997, 38 (2), 267–290.
- Ortiz-Ospina, Esteban, Charlie Giattino, and Max Roser, "Time Use," *Our World in Data*, 2020.
- **Plosser, Charles I.**, "Understanding Real Business Cycles," *Journal of Economic Perspectives*, 1989, *3* (3), 51–77.

Representative Household I

Household maximizes:

$$U = \sum_{t=0}^{\infty} \beta^{t} [b \log(C_{t}) + (1-b) \log(I_{t})]$$
 (1)

▶ Allocation of time between paid work (h_{Mt}) , unpaid work (h_{Ht}) and leisure (I_t)

$$I_t = 1 - h_{Mt} - h_{Ht} \tag{2}$$

Consumption from the market (c_{Mt}) or from home production (c_{Ht})

$$C_t = \left[ac_{Mt}^e + (1-a)c_{Ht}^e\right]^{\frac{1}{e}} \tag{3}$$

Further Material

Representative Household II

▶ Allocation of capital between the market and the household

$$c_{Mt} + x_t = w_t(1 - \tau_h)h_{Mt} + r_t(1 - \tau_k)k_{Mt} + \delta_M \tau_k k_{Mt} + T_t$$
 (4)

- Home production function
 - Note: Home production can only be consumed

$$c_{Ht} = g(h_{Ht}, k_{Ht}, z_{Ht}) = k_{Ht}^{\eta} (z_{Ht} h_{Ht})^{1-\eta}$$
 (5)

► More general home production function (model 4)

$$c_{Ht} = g(h_{Ht}, k_{Ht}, z_{Ht}) = [\eta k_{Ht}^{\Psi} + (1 - \eta)(z_{Ht}h_{Ht})^{\Psi}]^{\frac{1}{\Psi}}$$
 (6)

Representative Firm

- ▶ Profit maximizing firm with Cobb-Douglas production function
- ightharpoonup Maximizes profits by choosing input factors k_{Mt} and h_{Mt}

$$y_t = k_{Mt}^{\theta} (z_{Mt} h_{Mt})^{1-\theta} \tag{7}$$

Government

References

▶ Government income is transferred entirely back to the households via a lump-sum transfer T_t

$$G_t = w_t \tau_h h_{Mt} + r_t \tau_k k_{Mt} - \delta_M \tau_k k_{Mt} - T_t = 0$$
 (8)

Further Material

Resource Constraint

References

► Feasibility implies that market output is allocated across market consumption, total investment, and government spending (=0)

$$y_t = c_{Mt} + x_t \tag{9}$$

- Real Business Cycle model including a home production function
- Agents
 - ▶ Representative Household → utility maximizing
 - Allocation of consumption $(C_t = [ac_{Mt}^e + (1-a)c_{Ht}^e]^{\frac{1}{e}})$
 - ▶ Allocation of time $(I_t = 1 h_{Mt} h_{Ht})$
 - ightharpoonup Allocation of investment (x_{Mt}, x_{Ht})
 - ► Home Production Function: $c_{Ht} = k_{Ht}^{\eta} (z_{Ht} h_{Ht})^{1-\eta}$
 - Representative Firm → profit maximizing
 - $\mathbf{v}_t = k_{Mt}^{\theta} (z_{Mt} h_{Mt})^{1-\theta}$
 - ► Government → absent (zero spending)
 - $G_t = W_t \tau_b h_{Mt} + r_t \tau_b k_{Mt} \delta_M \tau_b k_{Mt} T_t = 0$
- Exogenous shocks to home and market technology ("innovation")

Business Cycle Properties

References

Table: Effects of Adding Home Production to RBC Model

	σ_y	$\frac{\sigma_{x}}{\sigma_{y}}$	$\frac{\sigma_{c_M}}{\sigma_{\gamma}}$	$\frac{\sigma_{h_M}}{\sigma_{\gamma}}$	$\frac{\sigma_w}{\sigma_y}$	$\frac{\sigma_{h_M}}{\sigma_w}$	$\rho_{h_M,w}$	ρ_{x_M,x_H}
Data	1.96	2.61	0.54	0.78	0.73	1.06	-0.12	0.30
1	1.40	2.81	0.40	0.41	0.60	0.69	0.96	-0.13
2	1.56	2.56	0.60	0.50	0.55	0.91	0.84	-0.90
2a	2.36	2.73	1.36	0.94	0.35	2.66	-0.01	-1.00
3	1.47	2.45	0.55	0.48	0.54	0.88	0.94	-0.83
4	1.13	4.09	0.41	0.29	0.74	0.40	0.86	-0.60
4a	1.30	3.10	0.38	0.37	0.64	0.57	0.96	0.26

- ► The data corresponds to the U.S. time series between 1947 and 1987
- Numbers in the first column correspond to the model specifications

Further Material

Comovement Problem I

Productivity vs. Market Hours

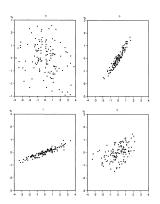


Figure: Market Hours vs. Productivity (Benhabib et al., 1991)

▶ a: U.S. Data; b: Standard Model; c and d: Home Production

Comovement Problem II

- ▶ Data: Small negative correlation $(\rho_{h_{M},w})$ → less hours required to earn same income
- Standard model: Only shock to labor demand → positive correlation
- Model with home production: Additional shock to labor supply through home technology shocks
 - Increase standard deviation of home technology shocks to further shift labor supply \rightarrow decreases the correlation
- Problem: Most papers use very similar standard deviation for the home technology shock (e.g., Benhabib et al., 1991; Hansen and Wright, 1992; Fisher, 2007)
- No evidence for a much higher standard deviation

Comovement Problem III

Market Investment vs. Home Investment

- ▶ Data: Positive correlation $(\rho_{XM,XH})$
- Standard model with home production (Fisher, 2007)
 - Market capital produces market consumption and investment goods
 - Household capital produces only home consumption goods
 - Incentive to substitute away from household capital toward business capital after a market technology shock \rightarrow negative correlation

Comovement Problem IV

- Model with general home production function:
 - lacktriangle Highly correlated shocks ightarrow shock to market and home at the same time
 - Move hours to the market but hours in the home are more effective
 - Degree of substitution in home production can imply the desire to increase capital in the home during market upswing \rightarrow positive correlation
- Lacking evidence for the elasticity of substitution in home production
- Other Solutions:
 - Add home capital to market production (Fisher, 2007)
 - Introduction of durable and non-durable goods (Baxter, 1996)

Impulse Response Functions I

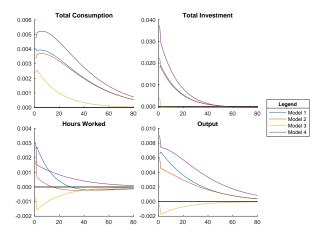


Figure: Impulse Response Functions for Home Technology Shock

Impulse Response Functions II

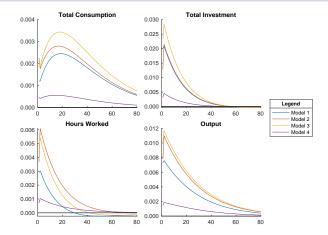


Figure: Impulse Response Functions for Market Technology Shock

Endogenous Variables I

References

Table: Endogenous Variables

	Meaning
а <i>С</i>	Total consumption
$^{a}\mathcal{C}_{H}$	Goods and services produced in the home
$^{a}\mathcal{C}_{M}$	Goods and services purchased in the market
$^{b}h_{H}$	Labour hours spent working in the household
$^{b}h_{\mathcal{M}}$	Labour hours spent working in the market
ьI	Leisure time $(1 - h_H - h_M)$
ck	Total capital
ckH	Household capital
$^{c}k_{M}$	Market capital
^a r	Price at which business capital can be rented to firms
^b T	Lump-sum transfer payment from the government

Endogenous Variables II

References

	Meaning
b _W	Real wage rate in the market
^b X	Total investment
$^{b}x_{H}$	Investment in household capital
$^{b} x_{M}$	Investment in business capital
Ьy	Market output
$^{c}Z_{H}$	Technology level in the home
$^{c}Z_{M}$	Technology level in the market
^c ž̃ _H	Shock resulting from technological changes in the home
c ž _M	Shock resulting from technological changes in the market

- ▶ ^a denotes forward-looking variables (jumpers)
- b denotes static variables
- c denotes state variables

Exogenous Variables

Table: Exogenous Variables

	Meaning	Standard deviation
ϵ_{H}	Innovations in the home	σ_H
ϵ_{M}	Innovations in the market	σ_{M}

Parameters I

References

Table: Parameters

	Meaning
а	Share of c_{Mt} of total consumption
b	Weight factor of consumption vis-a-vis leisure
e	Willingness of a household to substitute between market
	consumption c_{Mt} and home consumption c_{Ht}
β	Discount factor
δ_{H}	Depreciation rate on household capital
δ_{M}	Depreciation rate on business capital (tax-deductible)
η	Capital share in the home production function
γ	Measures the household's incentive, to move economic
	activity between the home and the market

Parameters II

References

	Meaning
ρ_H	Persistence of market technology shock
$ ho_{M}$	Persistence of home technology shock
σ_{H}	Standard deviation of innovations in the household
σ_{M}	Standard deviation of innovations in the market
$ au_{k}$	Tax rate on capital income
$ au_{h}$	Tax rate on labour income
θ	Capital share in the market production function
λ	Growth rate of all endogenous variables besides
	h_{Mt} , h_{Ht} , I_t and r_t
Ψ	Willingness of a household to substitute between
	capital k_{Ht} and time h_{Ht} in the home production

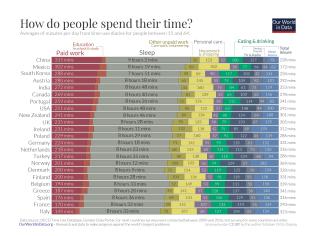


Figure: OECD Countries 2009 - 2016 (Ortiz-Ospina et al., 2020) Extensions

Further Reading

- Standard home production model:
 - Greenwood and Hercowitz (1991)
 - Greenwood (2019)
 - Greenwood et al. (2020)
- More modern models with home production:
 - Davis and Heathcote (2005)
 - Fisher (2007)